

May 24-25, 2022. Itasca, Illinois

# The State of Natural Colorants: Advice on Applications to Updates on Recent Research

Slightly Redacted Version

M. Monica Giusti, Ph.D.



















### Dr. M. Mónica Giusti

- ► Food Engineer, UNALM, Peru
- MS and PhD in Food Science, Oregon State Univ.
- ▶ Distinguished Professor, The Ohio State Univ., Food Science & Technology Dpt., CFAES





- Innovation and Teaching awards, OSU, IFT
- 8 patents granted, 3 more pending
- Fellow of the National Academy of inventors (since 2020)



### Research Interest: Flavonoids

- Isoflavones
  - Phytoestrogens
- Anthocyanins
  - Natural colorants
  - Phytonutrients
- Proanthocyanidins
  - Urinary tract protection



### Areas of work

- Analytical
- Horticultural
- Processing food applications
- Bioavailability
- Health benefits





### **Consumer Trends**

WANT TO AVOID...

- Synthetic ingredients
- Artificial colors
- Complex labels

WANT TO SEE...

- Natural
- ► Healthy
- ► Clean labels
- "super foods"

















# Why do we add colorants to food?

- < 85% of consumer buying decisions are potentially influenced by color
- Color has a major impact on flavor perception and flavor acceptance.
- Effective color usage drives consumer trial and acceptance.

### Colors Added to Foods

Color has been added to foods since ancient times, and by cultures all over the world:

- ▶ (1500 BC) Egyptian wall paintings show color was used in candy
- ▶ (400 BC) Pliny the Elder spoke of artificial wine color
- Incas colored foods and fabrics with cochineal
- Mayans colored their food with annatto











### Classes of Food Colorants in the USA

- Certified Colorants: Synthetic colorants
  - Chemically synthesized
  - ► EVERY batch must be FDA certified
- Colors Exempt from Certification
  - ► Colors from natural sources
  - ▶ Plant, animal or minerals pigments
  - ▶ OR... Nature identical





### Food colorant uses

Only colorants determined to be safe by the FDA can be used (listed in 21CFR73)

- ► Enhance & correct colors already present
- Provide color identity to colorless foods
- Account for color loss during storage

### Food colorants should never be used to...

- Hide defects
- Deceive consumers

## Synthetic Colorants Concerns

- Potential negative side effects
  - Allergies
  - Hypersensitivity
  - ► "The Southampton study", UK since 2007
    - Showed link between tested synthetic colorants and hyperactivity in children (ADHD)
- Regulatory changes in Europe, concerns all over the world.

## **European Food Safety Authority** Warning Requirement



"consumption may have an adverse effect on activity and attention in children."

FD&C Red#40, Yellow#6, Blue#1





Beetroot red, Annatto, Paprika



Blue No.1



extract



## Warning in the USA?

- In 2011 FDA formed an expert panel to evaluate if warning labels were needed
- FDA decided not to require warnings, but recommended re-evaluation of the safety of all synthetic dyes.

## Can we just remove synthetic colors?

- ► We eat with our eyes first...
- Consumers correlate color with
  - ▶ Identity of the product product recognition
  - ► Flavor identification
  - Overall quality characteristics
  - Sometimes even safety and nutritional value!







# Could we just use red to get red, and blue to get blue...???

► Replicating the colors from nature is not an easy task!





## Where to start? Important considerations

- Your Product
  - ▶ What are the ingredients, processes, packaging
  - ▶ What color is the right color for your product?

► Who is your customer / target market

Regulatory restrictions --- www.eCFR.gov



### About the colorant choice

- ► Interaction with your Product
  - ▶ What color will it provide to your product?
  - ► How will it interact with other food components?
- Consumer perception
  - ► How will the color be listed?
  - ▶ Will it have a positive response from consumers?
- Regulations: Is the colorant allowed at what level of usage?



- Annatto extract
- Dehydrated beets (beet powder)
- [β]-Apo-8'-carotenal
- [β]-Carotene
- Butterfly pea flower extract
- Calcium Carbonate
- Canthaxanthin
- Caramel
- Carrot oil
- Cochineal extract; Carmine

- Cottonseed flour (toasted, partially defatted, cooked)
- Ferrous gluconate
- Ferrous lactate
- Fruit juice
- Grape color extract
- Grape skin extract (enocianina)
- Lycopene, tomato extract or concentrate
- Mica-based pearlescent pigments

- Paprika / Paprika oleoresin
- Riboflavin
- Saffron
- Soy leghemoglobin
- Sodium copper chlorophyllin
- Spirulina extract
- Synthetic iron oxide
- Titanium dioxide
- Turmeric
- Turmeric oleoresin
- Vegetable juice

A total of 39 are listed, with 30 for use in human food.

Natural Colorants: Food Colorants from Natural Sources

Gregory T. Sigurdson, Peipei Tang, and M. Mónica Giusti

- Vegetable Sources
- Animal / Microbial Sources
- Mineral Sources



Annual Review of Food Science and Technology Vol. 8:261-280 (2017)



## Pigments in Plants: Nature is Colorful!!

| Chemical<br>Group          | Pigments     | Coloration        | Occurrence (examples)          |
|----------------------------|--------------|-------------------|--------------------------------|
| Tetrapyrroles              | Chlorophylls | Blue-green        | Broccoli, lettuce, spinach     |
| Isoprenoid / Tetraprenoids | B-carotene   | Yellow-orange     | Carrots, melons, peaches       |
|                            | Lycopene     | Orange-red        | Tomatoes, watermelon           |
| Polyphenols                | Anthocyanins | Orange-red-blue   | Berries, red apple, red radish |
|                            | Flavonols    | White-cream       | Onions, coliflower             |
| N-heterocyclic             | Betalains    | Purple/red-orange | Beets, cactus pear             |

- Annatto extract
- Dehydrated beets (beet powder)
- [β]-Apo-8'-carotenal
- [β]-Carotene
- Butterfly pea flower extract
- Calcium Carbonate
- Canthaxanthin
- Caramel
- Carrot oil
- Cochineal extract; Carmine

- Cottonseed flour (toasted, partially defatted, cooked)
- Ferrous gluconate
- Ferrous lactate
- Fruit juice
- Grape color extract
- Grape skin extract (enocianina)
- Lycopene, tomato extract or concentrate
- Mica-based pearlescent pigments

- Paprika / Paprika oleoresin
- Riboflavin
- Saffron
- Soy leghemoglobin
- Sodium copper chlorophyllin
- Spirulina extract
- Synthetic iron oxide
- Titanium dioxide
- Turmeric
- Turmeric oleoresin
- Vegetable juice

### Only 1 colorant derived from Chrolophyll.

## Chlorophyll-derived Colorant

### Sodium copper chlorophyllin:

- Water soluble!!
- Mg<sup>2+</sup> replaced with Cu<sup>2+</sup>

• Restricted 1 *Identity.* (1) The color additive sodium copper dry mix cit chlorophyllin is a green to black powder prepared from chlorophyll by saponification and replacement of magnesium by copper. Chlorophyll is extracted from alfalfa (Medicago sativa ) using any one or a combination of the solvents acetone, ethanol, and hexane. (CFR 21 Part 73.125)







- Annatto extract
- Dehydrated beets (beet powder)
- [β]-Apo-8'-carotenal
- [β]-Carotene
- Butterfly pea flower extract
- Calcium Carbonate
- Canthaxanthin
- Caramel
- Carrot oil
- Cochineal extract; Carmine

- Cottonseed flour (toasted, partially defatted, cooked)
- Ferrous gluconate
- Ferrous lactate
- Fruit juice
- Grape color extract
- Grape skin extract (enocianina)
- Lycopene, tomato extract or concentrate
- Mica-based pearlescent pigments

- Paprika / Paprika oleoresin
- Riboflavin
- Saffron
- Soy leghemoglobin
- Sodium copper chlorophyllin
- Spirulina extract
- Synthetic iron oxide
- Titanium dioxide
- Turmeric
- Turmeric oleoresin
- Vegetable juice

Several carotenoid-based or related colorants.

## Carotenoids







- Colors range from yellow to orange to intense red
- Fat soluble
- Beta carotene: precursor to vitamin A

### Commercial Forms of Carotenoids

- MANY!!!! Nature identical and from nature
- Physical properties
  - ► Liquid suspension in vegetable oil
  - ► Semi-solid suspension 25% in hydrogenated vegetable oil
  - ► Beadlet-water dispersible
  - ► Emulsion, beverage type

**β-carotene** suspensions and beadlets



Annato



Canthaxanthin beadlets



- Annatto extract
- Dehydrated beets (beet powder)
- [β]-Apo-8'-carotenal
- [β]-Carotene
- Butterfly pea flower extract
- Calcium Carbonate
- Canthaxanthin
- Caramel
- Carrot oil
- Cochineal extract; Carmine

- Cottonseed flour (toasted, partially defatted, cooked)
- Ferrous gluconate
- Ferrous lactate
- Fruit juice
- Grane color extract
- (a) *Identity*. (1) The color additive dehydrated beets is a dark red powder prepared by dehydrating sound, mature, good quality, edible beets. CFR 21, Part 73.40

Should be used according to GMPs.

 Mica-based pearlescent pigments

- Paprika / Paprika oleoresin
- Riboflavin
- Saffron
- Soy leghemoglobin

- Chimilina autraat

Sodium copper chlorophyllin

de

Vegetable juice

### Beet based colorant



### **Betalains**

- From yellow to purple-red
- Water soluble
- Limited distribution in nature
- Not very susceptible to pH, works great at pH close to neutral
- Sensitive to light, heat, oxygen



HOOC//

COOH.

- Annatto extract
- Dehydrated beets (beet powder)
- [β]-Apo-8'-carotenal
- [β]-Carotene
- Butterfly pea flower extract
- Calcium Carbonate
- Canthaxanthin
- Caramel
- Carrot oil
- Cochineal extract; Carmine

- Cottonseed flour (toasted, partially defatted, cooked)
- Ferrous gluconate
- Ferrous lactate
- Fruit juice
- Grape color extract
- Grape skin extract (enocianina)
- Lycopene, tomato extract or concentrate
- Mica-based pearlescent pigments

- Paprika / Paprika oleoresin
- Riboflavin
- Saffron
- Soy leghemoglobin
- Sodium copper chlorophyllin
- Spirulina extract
- Synthetic iron oxide
- Titanium dioxide
- Turmeric
- Turmeric oleoresin
- Vegetable juice

### Anthocyanin-based Colorants.

## **Anthocyanin Sources**



**Berries & most fruits: Simple pigments** 



**Other Sources:** 

**Complex pigments** 

## Fruit & Vegetable Juice Concentrates

- Pigments expressed and concentrated using:
  - Water as solvent
  - Physical means of extraction / concentration
  - Processes / aids already approved for juice manufacture
- ► Source must be edible
- ► NOT approved as juice
  - ► Alcohol / other solvents
  - Use of resins that separate based on chemical means / affinity











# Anthocyanin colors are affected by...

- ► Chemical Structure
- Matrix composition
  - ▶ pH
  - ► Enzymes or pro-oxidants HO
  - ▶ Metals
  - Co-pigmentation
  - ▶ Bisulfite
- Other stressors
  - ▶ Temperature
  - ► Light
  - Oxygen



## Just Approved, Oct 2021

- ► Butterfly Pea Flower Extract:
  - ► Anthocyanin-based colorant, produces blue colors even in low acid pH







- Annatto extract
- Dehydrated beets (beet powder)
- [β]-Apo-8'-carotenal
- [β]-Carotene
- Butterfly pea flower extract
- Calcium Carbonate
- Canthaxanthin
- Caramel
- Carrot oil
- Cochineal extract; Carmine

- Cottonseed flour (toasted, partially defatted, cooked)
- Ferrous gluconate
- Ferrous lactate
- Fruit juice
- Grape color extract
- Grape skin extract (enocianina)
- Lycopene, tomato extract or concentrate
- Mica-based pearlescent pigments

- Paprika / Paprika oleoresin
- Riboflavin
- Saffron
- Soy leghemoglobin
- Sodium copper chlorophyllin
- Spirulina extract
- Synthetic iron oxide
- Titanium dioxide
- Turmeric
- Turmeric oleoresin
- Vegetable juice

### Other Interesting Colorants.

### **Caramel Colors**

- ▶ Produced from heat treatment of sugars
  - ► Glucose, fructose, lactose, malt syrup, molasses, starch hydrolysates
  - ► Salts, acids or alkalis can produce a variety of colors.
- ► Many different applications:
  - ► Baking, desserts and confectionary
  - ► Sauces, soups and seasonings
  - ▶ Beverages
  - ► Snacks and cereals
  - ► Meats and poultry







### Other natural sources of colorants

### **►** Turmeric

- From tubers of a plant ("Curcuma longa")
- ► Yellow to orange
- Curry pigments

### Cochineal / carmine

- Source: dried insects
- ► Colors form orange to brick red
- ► Used in foods and many cosmetics!



- Annatto extract
- Dehydrated beets (beet powder)
- [β]-Apo-8'-carotenal
- [β]-Carotene
- Butterfly pea flower extract
- Calcium Carbonate
- Canthaxanthin
- Caramel
- Carrot oil
- Cochineal extract; Carmine

- Cottonseed flour (toasted, partially defatted, cooked)
- Ferrous gluconate
- Ferrous lactate
- Fruit juice
- Grape color extract
- Grape skin extract (enocianina)
- Lycopene, tomato extract or concentrate
- Mica-based pearlescent pigments

- Paprika / Paprika oleoresin
- Riboflavin
- Saffron
- Soy leghemoglobin
- Sodium copper chlorophyllin
- Spirulina extract
- Synthetic iron oxide
- Titanium dioxide
- Turmeric
- Turmeric oleoresin
- Vegetable juice

### New Colorants Approved Since 2000



## Recently Approved

- ► Sodium Copper Chlorophyllin (2002)
- ► Tomato lycopene extract; tomato lycopene concentrate (2005)
  - Red to dark brown oleoresin extracted with ethyl acetate from fresh, edible varieties of the tomato. The coloring is lycopene.
- ► Mica-based pearlescent pigments (2006)
  - ▶ Platelets of potassium aluminum silicate (mica) with titanium dioxide. Part transmittance, reflection and interference of light. Use in cereal, confectionary, spirits, alcohol.



### Spirulina (2013)

- Green to blue in color
- Edible cyanobacterium, primarily from <u>Arthrospira platensis</u> and <u>Arthrospira maxima</u>.
- Phycocyanins and chlorophyl
- Main safety concern: production of toxic compounds by some cyanobacteria.







### Spirulina Extract as Food Colorant

- ► GRAS Self affirmation, 2002 not as colorant, but ingredient with color
- ► FDA approved Spirulina as Food Colorant for candy and chewing gum in September 2013
- Additional uses approved later, including frosting, dairy products, other desserts, gelatin, cereals, according to GMPs







## Approved 2019

- ► Soy leghemoglobin (2019):
  - Product of controlled fermentation of a non-pathogenic and non-toxicogenic strain of the yeast, *Pichia pastoris*, genetically engineered to express soy leghemoglobin protein. It imparts a reddish-brown color.
  - ▶ Behaves like meat myoglobin







## Just Approved, Oct 2021

- ► Butterfly Pea Flower Extract:
  - ► Anthocyanin-based colorant, produces blue colors even in low acid pH







#### Transitioning to Colorants from Natural Sources

#### Challenges:

- Finding the "Right" color
- Compatibility with matrix
- Color and pigment stability
- Possible undesirable aromas / flavors
- Higher costs? Changes in the process?

#### **Opportunities:**

- Consumer perception / increased demand
- Standardizing formulations!!!
- Added value: potential health benefits?
- Coloring foodstuffs (i.e., natural plant extracts or concentrates) in place of coloring additives.

#### Trends Towards Color from Naturals Sources

Proportion of consumers that report to be very/extremely concerned about food colorings





May 24-25, 2022. Itasca, Illinois

## Recent Research on Anthocyanin-based Colorants

M. Monica Giusti, Ph.D. The Giusti Phytochemicals Laboratory.



https://u.osu.edu/giustilab/



















## Stabilization and Color Enhancement of Anthocyanins

The anthocyanin chemical structure

Horticultural factors

Copigmentation

Metal complexation

Anthocyanin-protein interactions

Pyranoanthocyanins

Microencapsulation



The Giusti Phytochemicals Laboratory. https://u.osu.edu/giustilab/

## Horticultural Factors Affecting Phenolic Accumulation

- Plant domestication can alter (reduce) anthocyanin and phenolic content
- Cultivar selection and growing conditions affect pigment concentration and composition
- Insect infestation on blueberry induced phenolic accumulation and altered anthocyanin profile



# Metal Chelation Affects Anthocyanin Color and Stability

- Evaluate the effect of anthocyanin structure on color expression of chelate
- Investigate stability of chelates





Sigurdson, GT; Robbins, RJ; Collins, TM; **Giusti, MM**. 2016. Metal lons & Cyanidin. *Food Chem*. 208: 26-34. Sigurdson, GT; Robbins, RJ; Collins, TM; Giusti, MM. 2017. Spectra & Color of Metal Chelates of Acylated Cyanidin." Food Chem. 221: 1088-1095. Tang, P; Giusti, MM. 2020. Metal Chelates of Petunidin Derivatives Enhanced Color and Stability. Foods 9, 1426. https://doi.org/10.3390/foods9101426.

### **Anthocyanin Copigmentation**

Anthocyanin color may be enhanced and stabilized by co-pigments



Intermolecular Copigmentation



Pangestu, NP; Miyagusuku-Cruzado, G; **Giusti, MM**. 2020. Copigmentation & Anthocyanin Stability. *Foods* 9 (10), 1476.. Ren, S; **Jimenez-Flores**, R; **Giusti, MM**. Interactions of anthocyanin and whey protein: A review. Comp.Rev Food Sci Food Safety. CRF3-2021-0442.R1. Gordillo, B; Sigurdson, GT; (...); Giusti, MM. (2018). Color and stability of naturally copigmented anthocyanin-grape colorants. Food Res Int, 106, 791-799.

#### Will this stain ever fade?



By Unknown Author, licensed under CC BY

#### Pigments in Wine



Young wine: Anthocyanins<sup>1</sup> from grapes



#### By unknown author, licensed under CC-BY-SA-NC

#### Aged wine: Pyranoanthocyanin

- Formed during wine fermentation<sup>1</sup>
- Higher stability<sup>2</sup>



 $R_2$ OH В HO Glycosylation-Acylation

Sigurdson, G., Tang, P., Giusti, MM. (2017). Annu. Rev. Food Sci. Technol. 8:261-80

2. Sun, J., Li, X., Luo, H. et al. (2020). J. Agric. Food Chem. 68: 2783-94

## Types of Pyranoanthocyanins (PACN)



Zhu, X, **Giusti, MM**. 2021. PACN formation by Cyanidin and pyruvic or caffeic acids. Food Chem. 345:128776. Miyagusuku-Cruzado, G; Voss, DM; Giusti, MM. 2021. Anthocyanin & Cofactor Structure on PACN formation Efficiency. Int. J. Mol. Sci. 2021, 22, 6708.

## Pyranoanthocyanins: Higher Heat Stability



Color swatches represent CIE L\*a\*b\* values of heated pigmented solutions (pH 3.0) based on visible light absorbance spectra.

### Heat Stability of Color

Color changes with heat



- Pyranoanthocyanins were 2-9X more stable than anthocyanins with 90°C heat
- 10-Catechyl-PyranoCyanidin-3-Glucoside had the most stable color

# Anthocyanin Bioavailability and Bioactivity

- Anthocyanin stability in the GIT
  - Starting from the oral cavity
- ► Chemoprotective effects of anthocyanins
- Anthocyanin penetration in the skin cosmetics





He, J; Giusti, MM. Health promoting Anthocyanins Ann Rev. Food Sci Technol. 1 (1): 163-187. Kamonpatana, K; **Giusti, MM**; (...) Failla, ML. 2012. Anthocyanins in human saliva. *Food Chem.* 135: 738-747. Singletary, KW; Jung, KJ; Giusti, MM. Anthocyanin extract blocks DNA damage. *J. Med. Foods*.10 (2) 244-251. Westfall, A, (...), Giusti, MM. 2020. Penetration of topically applied anthocyanins. Antioxidants 9 (6) 486, 1-14.

#### Some Final Considerations

Universal color solutions do not exist

- Creating new products will be easier than color matching old formulations
  - ▶ Some changes in the process may be needed



#### Transitioning from synthetics can be challenging



#### ...Some Final Considerations

- Work with suppliers you trust
  - ► Colorant companies will work with you!
  - ► Solutions will be based on application and needs
- Costs may increase, but customers may be willing to pay more
- Colors from nature may provide more than color
  - ► Health benefits?
- ► There is plenty to learn in this fascinating field







## Thank you!







https://u.osu.edu/giustilab/

