

Sodium Reduction: Using Clean Label Salty, Umami and Kokumi Taste

Modulation

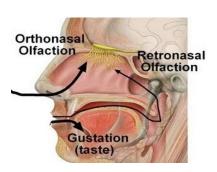
Alex Woo, PhD CEO W20 Food Innovation

May 24-25, 2022

Executive Summary

Saltiness Modulation: The four mechanisms are Substitution including KCI, Surface Area such as microspheres, Umami as in seaweed, and Neuroscience like expectancy constancy.

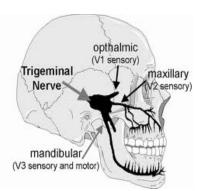
- Umami Modulation: There are also four mechanisms. Clean Label MSGs such as reduced sodium soy sauce, Vegetable Extracts including seaweed extract, and Natural PAM like umami peptides are recommended.
- Kokumi Ingredients: The tripeptide Glutamyl-Valyl-Glycine is the most potent kokumi compound
- Stacking is a clean label sodium and MSG reduction strategy for blending the three types of plant-based savory ingredients to make foods salty, rich and delicious.


Agenda

Module 1: Salty- neuroscience, ingredients and modulators

- Module 2: Umamineuroscience, ingredients and modulators
- Module 3: Kokumi- Ingredients
- Module 4: Stacking to make foods salty, rich and delicious

"Flavor" involves all 5 senses......



- Thermoception: Temperature,
- Nociception: Pain (Youseff, 2015), and
- Up to total 30 senses? (Smith, 2016) can they all be part of somatosensation?

- Vision ("Seeing the flavor". Acree, 2013)
- Sound is the Forgotten Flavor Sense (Spence 2015. Gastropod, 2015)

Taste Receptors

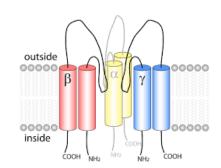
Taste receptors had been identified during the rapid advances of taste physiology and neuroscience in the past 15+ years (NIZO, 2011)

- ☐ Bitterness: 25 Receptors: T2Rs. Family: GPCR. 2000.
- Sweetness: 1 Receptor: T1R2/T1R3. Family: GPCR. 2001. And a newly found secondary pathway.
- Umami: 1 Receptor: T1R1/T1R3. Family: GPCR. 2002.
- Sourness: "Receptor": PKD1L3/PKD2L1. Family: Ion Channel. 2006.
- Saltiness: "Receptor": ENaC. Family: Na Channel. 2010.

 And a newly found secondary pathway in Type III cell.
- "Fat": Receptors: CD36, GPR120, FA1. Family: Several GPCR.
- "Calcium": Receptor: CaR. Family: GPCR
- (Water'': Receptor: Aquaporins. Family: Channel
- "Starchy": Proposed (Lim, 2016)

Taste receptors

Saltiness: Detection and Perception


Neuroscience:

o ENaC:

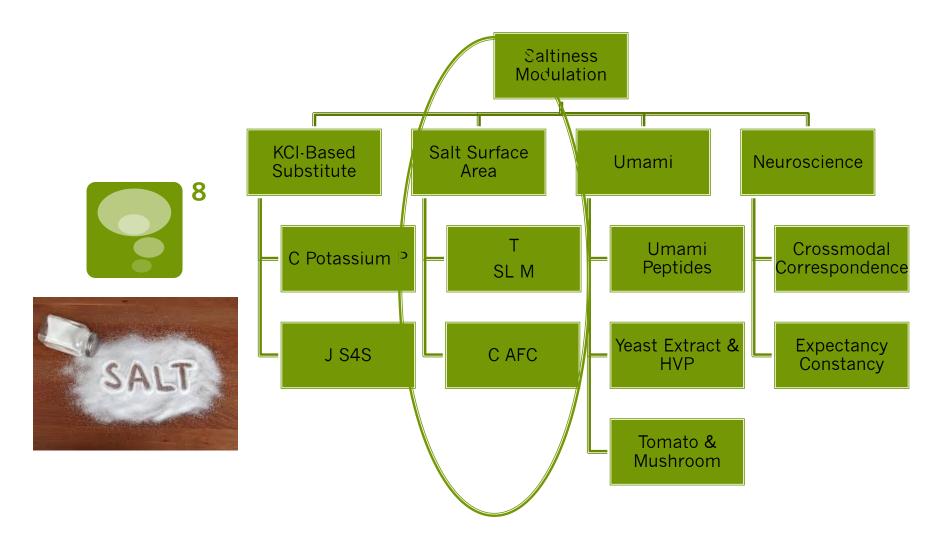
- These ion channels have transmembrane domains joined by a large extracellular loop, are selective for Na over other cations.
- ENaC is likely a trimer and composed of 3 subunits
- Secondary pathway: Non-selective to Na thus responds to both high level NaCl and any level KCl. (Chemosensory Transduction, Zufall and Munger, 2016. Chap. 16)

Taste:

- Low level= salty and appetitive, high level
 (>150mM)= bitter and aversive
- A little bit of salt (0.2%) made vegetables
 less bitter (Bakke et al, 2018)
 - Overweight/obese individuals were prone to consume more salt, had reduced salt sensitivity, and higher preference for salty_{5/25/2022} foods (Li et al. 2017)

Sodium Nutritional Claims by Country (Salt reduction

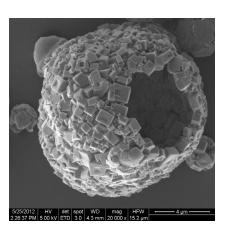
guide for the food industry, CTAC, 2014)



Claim	USA	Canada	Codex
Sodium free	<pre>< 5 mg /serving</pre>	<pre>< 5mg /serving</pre>	<5 mg /100g
Very low sodium	<pre>< 35 mg /serving</pre>	-	<40 mg /100g
Low sodium	<pre>< 140 mg /serving</pre>	<pre>< 140mg /serving</pre>	<120 mg /100g
No salt added	No NaCl added, Na compounds; can contain intrinsic Na	-	-
Reduced sodium	25% less Na than "earlier version"	>25% less Na than "earlier version"	-

Saltiness Modulation: There are 4 ways to do it, substitutes, surface area, umami and neuroscience. (W2O, 2022)

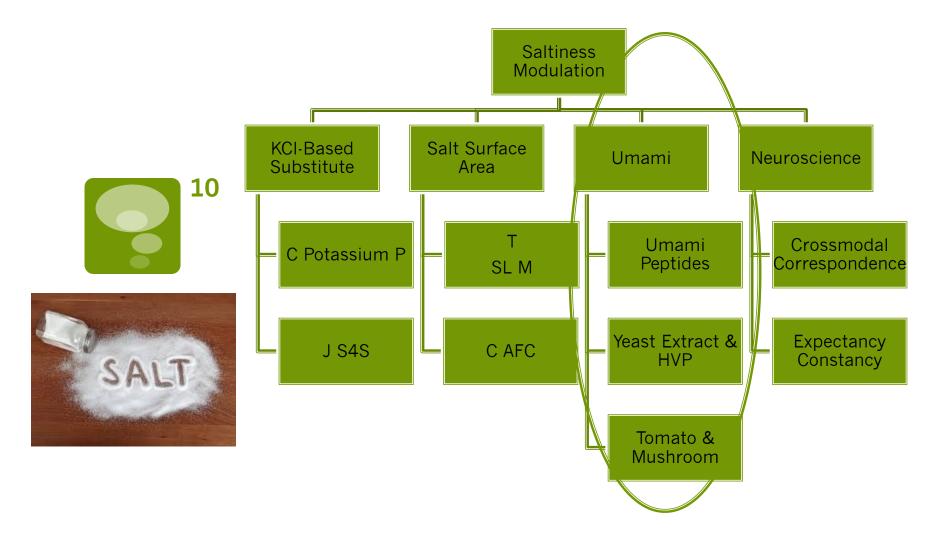


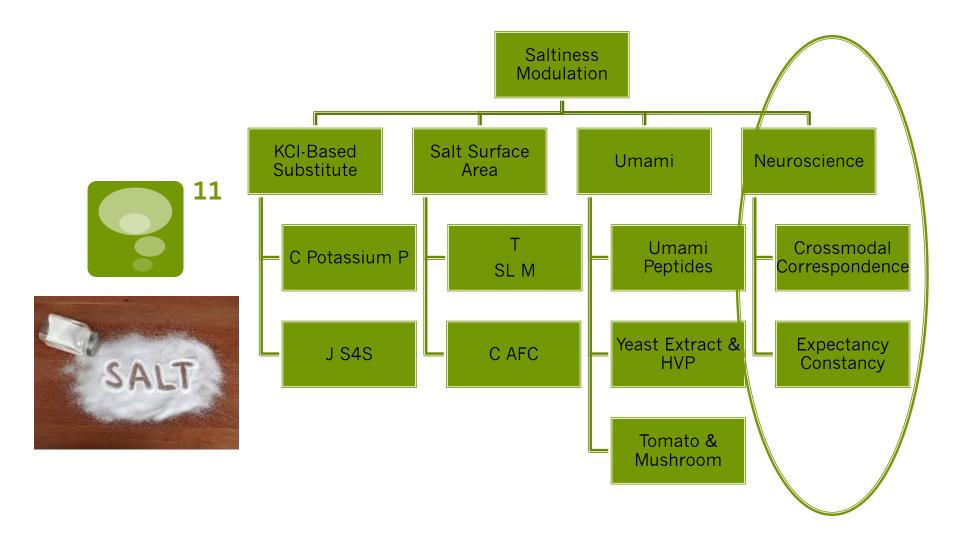

Saltiness Modulation: Increasing salt surface area is

the ultimate clean label but mostly only good for topical applications

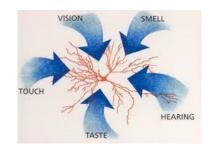
Chemistry & Neuroscience Supplier, Taste, and Regulatory

SL M




- Company T
- Extra Fine, 20-30micron, for snack seasoning, up to 50% reduction
- Fine N. 200 microns for topical salted snack. Tumbler+ scarf plate applicator
- Fine 600 microns for bread
- ~30% reduction
- Usage: ~25% salt by weight. Intact only in dry/almost dry foods.
- Label: salt or sea salt (<1.5%)

Saltiness Modulation: There are 4 ways to do it, substitutes, surface area, umami and neuroscience. (W20, 2022)



Saltiness Modulation: There are 4 ways to do it, substitutes, surface area, umami and neuroscience. (W20, 2022)

Saltiness Modulation: We can also increase salt

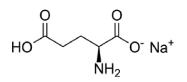
perception via crossmodal correspondence

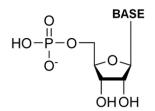
Perceptual constancy

- Stimuli changes, object perceived to stay the same
- •In other words:
- Image on retina changes, but brain perceives image as being constant/unchanging
- Stimuli changes, but percept remains the same
- · Sensation changes, perception doesn't

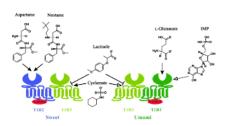
Chemistry & Neuroscience	What and How	
Crossmodal Correspondence	 What it is: Taste-Touch and Taste-Smell What it means: Prior association How to use: Pepper oleoresin, aged cheese aroma, beef or chicken or ham aroma (limitation: Congruent flavor only) 	
Expectancy Constancy	 What it is: Taste Contrast or Layering for 30% sodium reduction What it means: High-low-high layers or pieces How to use: In cereals and confections (pieces) and in bakeries (bread, pizza, layers) 	

Agenda

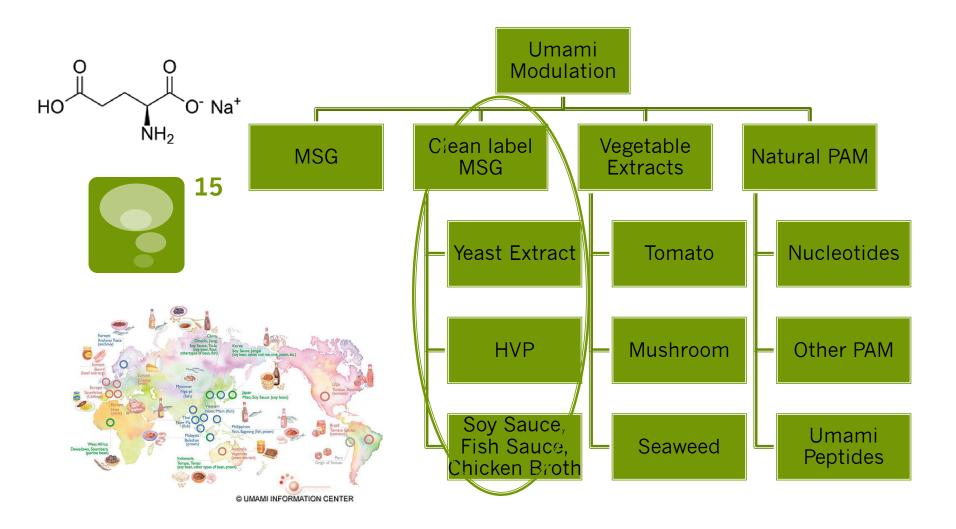

 Module 1: Salty- neuroscience, ingredients and modulators

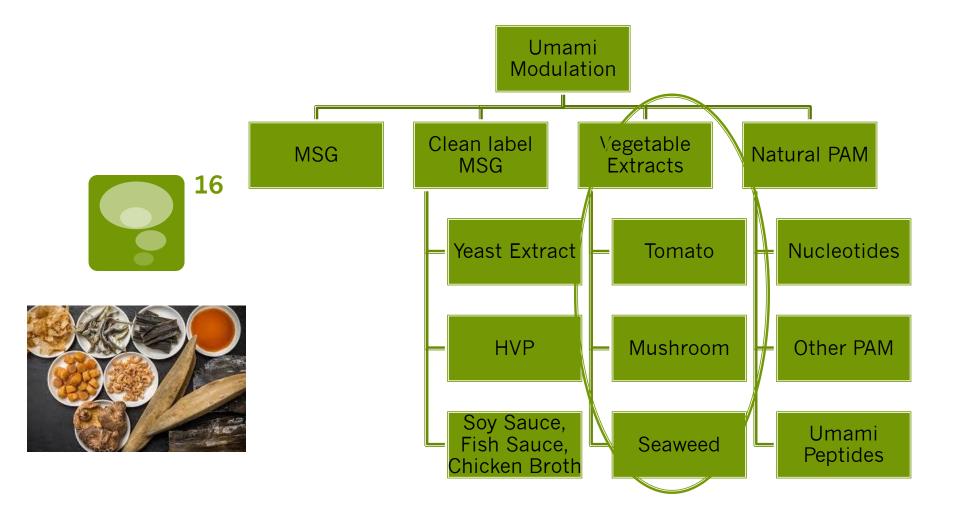


Module 2: Umamineuroscience, ingredients and modulators


- Module 3: Kokumi- Ingredients
- Module 4: Stacking to make foods salty, rich and delicious

Umami Taste: Detection and Perception





- Neuroscience:
 - Receptors: All GPCRs
 - ➤ **Primary: T1R1/T1R3**, MSG binds at VFT in T1R1 subunit only (Chemosensory Transduction, Zufall and Munger, 2016.)
 - ➤ **5 secondary pathways:** Responding to other amino acids and peptides
 Taste-mGluR4, Taste-mGluR1, CaSR, GCPR6A, GPR93.
- Taste:
 - o MSG: Umami= "Delicious"
 - More umami at higher temperature (Green et al, 2016)
 - Could be a flavor enhancer, in addition to being a basic taste.
- Regulatory:
 - USA: GRAS (MSG) labeled as MSG, Codex: Natural flavour

Umami Modulation: There are also 4 ways to do it. (W20, 2022)

Umami Modulation: There are also 4 ways to do it. (W20, 2022)

Umami Modulation:

Vegetable extract is the cleanest label

Chemistry & Neuroscience

Supplier, Taste, and Regulatory

0.5% Shiitake Extract Powder

(Shiitake mushroom high in natural MSG and nucleotides)

- Company NF
- Label: Shiitake extract? (8% protein, 5% total salt with up to 5% added at the end of manufacture)

0.25-0.5% Seaweed Extract Powder (Kombu, historically original source of MSG found in nature. Salty and flavor enhancement)

Company NF

- Usage: Reduce if tasted seaweedy
- Label: Kombu extract? (1% protein, 16% total salt with 11% intrinsic and 5% added salt at the end)

- 0.5-0.75% Fermented
 Rice Extract Powder
 (From sake lees, as high
 nucleotides yeast extract
 replacer. Mild soy sauce
 flavor)
- Company NF
- Usage: Reduce if tasted soy sauce
- Label: Fermented rice extract?
 (25% protein, 22% total salt added during fermentation)

W20 Food Innovation (Confidential)

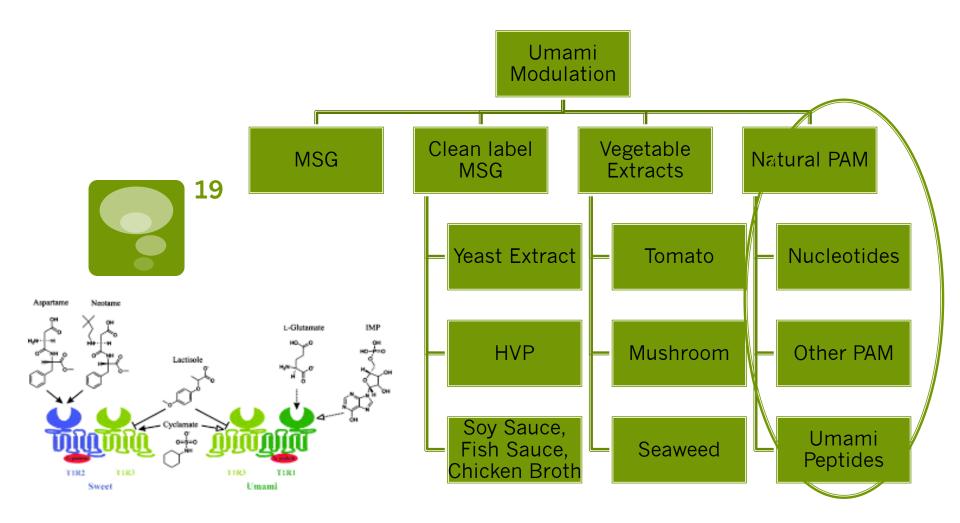
5/25/2022

Umami Modulation: Vegetable extract is the cleanest label

Chemistry & Neuroscience Supplier, Taste, and Regulatory

MU

(UB)

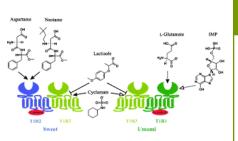


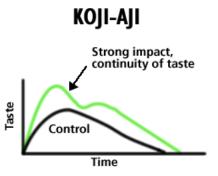
Company S/A

- Composition: Water, tomato concentrate, sea salt, mushroom extract, seaweed extract.
- 22% sugar. 7% salt. 1% potassium. 5% protein. 110 cal/100g
- Usage: 1% (0.3% -1.1%)
- Up to 45% Salt reduction or **MSG** reduction. Also kokumi effect.
- Label: USA= natural flavor, sea **salt**. EU= natural flavouring, sea salt
- Liquid, powder version on special request

Umami Modulation: There are also 4 ways to do it. (W20, 2022)

Umami is a Taste Found Abundantly in Nature:


The trick is combining the basal item with a synergistic item (Adam, 2015 and Umami, Mouritsen and Styrbaek, 2015), (A, 2022)



Umami Modulation: Nucleotides, which have been

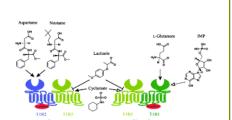
traditionally used to enhance MSG (8x, Company A), were proven to be Positive Allosteric Modulators (PAM).

Chemistry & Neuroscience

5'-nucleotides: IMP (inosinate) and GMP (guanylate), 50/50 blend

Supplier, Taste, and Regulatory

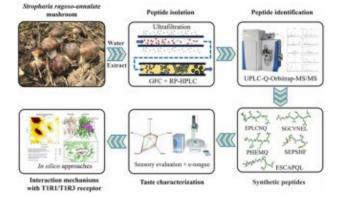
- Company A
- Umamiinfo.com
- Extracted or fermented
- 98% MSG+2%
 (IMP+GMP)= 400% MSG in perception (Salt Reduction Food Industry Guide, 2014)
- Labeled as I+G

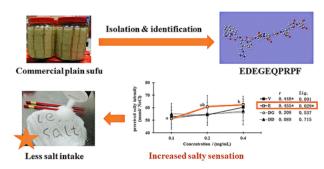

KA

Yeast extracts with nucleotides, +fermented wheat gluten and maltodextrin

- Company A
- IMP+GMP, MSG
- Label: yeast extract, fermented wheat

Umami and Salty Modulation: Salty taste can be


enhanced by exploring with newly discovered umami and/or salty peptides


Chemistry & Neuroscience What and How

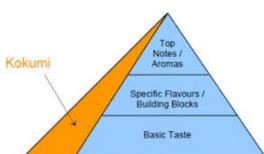
Umami Peptides

- What and How
 - What it is: 1) Mushroom peptides that bound to T1R3 VFT, in addition to its MSG bound to T1R1 VFT (U China 2022). 2) Preserved egg yolk 5 peptides both VFT (U China 2022) 3) 4 Peptides from cured fish were either Umami or Umami PAM (U China 2022). 4) 2 peptides from pufferfish (U China 2022). 6) Cured ham lactyl dipeptides Maillard product (U Italy 2022)
- What it means: natural flavor
- How to use: Explore

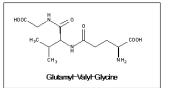
Salty Peptides

- What it is: Unusual Maillard products. 1) **Pea peptide+ sugar** (Rutger's 2021), 2) **Fish skin protein+ glucosamine** (U China, Austria and Canada 2020) 3) 4 Salty deca peptides from **fermented tofu** (U China 2021)
- What it means: natural flavor
- How to use: enhanced salty 25%, umami and kokumi

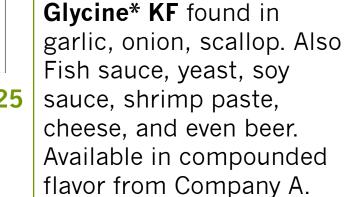
Agenda


- Module 1: Salty- neuroscience, ingredients and modulators
- Module 2: Umamineuroscience, ingredients and modulators
- Module 3: Kokumi-Ingredients
 - Module 4: Stacking to make foods salty, rich and delicious

Kokumi: Not yet proven to be a basic taste



- Neuroscience: CaSR receptor reported (A 2021), possibly part of oral somatosensation. Itself tasteless.
 - Taste, Kokumi= "Rich"
 - Mouthfulness, thickness, continuity and harmony (Company A, 2022)
 - Rich taste, best known for hearty and long finish. Mouthwatering punch at initial taste, and lends an overall balance and richness to foods (Company NF, 2022)
 - Kokumi allowing a reduction of salt , sugar and fat without sacrificing taste. (Company A, NF, S, 2022, Deakin U 2021)


Kokumi Ingredients: The most potent kokumi is a tri-

peptide Glutamine-Valine-Glycine

Chemistry & Neuroscience Supplier, Taste, and Regulatory

Tripeptide Glutamyl-Valyl-

- Company A
- **FEMA 4709**, soup< 50ppm
- "The most potent kokumi substance" (per two websites, review 2022)
- Usage: 2.5-40ppm
- · Label: Could be natural flavor

Chemistry & Neuroscience Supplier, Taste, and Regulatory

0.5-0.75% K Powder (Fermented soy sauce)

- Company NF
- Composition: 23% protein, 11% total salt all added during fermentation. Corn maltodextrin carrier.
- Label = Soy sauce

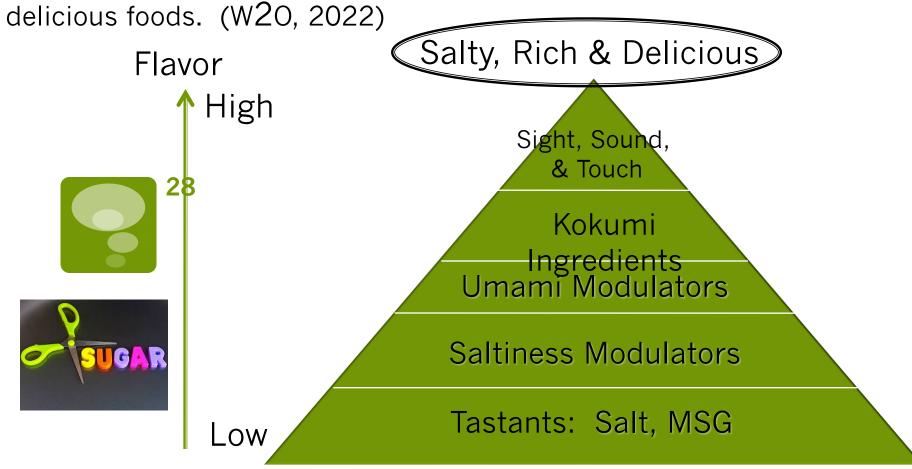
Kokumi Ingredients: There are also high-kokumi yeast

extract commercially available

Chemistry & Neuroscience Supplier, Taste, and Regulatory

0.1-1% S K

- Composition: **Yeast extract** with high kokumi. 9% protein (glutathione)+ 1%salt.
- Label = Dried Yeast


Agenda

- Module 1: Salty- neuroscience, ingredients and modulators
- Module 2: Umamineuroscience, ingredients and modulators
- Module 3: Kokumi- Ingredients
- Module 4: Stacking to make foods salty, rich and delicious

Stacking

Stacking is a clean label sodium and MSG reduction strategy for blending the plant-based savory ingredients to make salty, rich and

Executive Summary

Saltiness Modulation: The four mechanisms are Substitution including KCI, <u>Surface Area</u> such as microspheres, <u>Umami</u> as in seaweed, and <u>Neuroscience</u> like expectancy constancy.

• Umami Modulation: There are also four mechanisms. Clean Label MSGs such as reduced sodium soy sauce, <u>Vegetable Extracts</u> including seaweed extract, and <u>Natural PAM</u> like umami peptides are recommended.

- Kokumi Ingredients: The <u>tripeptide</u> Glutamyl-Valyl-Glycine is the most potent kokumi compound
- Stacking is a clean label sodium and MSG reduction strategy for blending three types of plant-based savory ingredients to make foods <u>salty</u>, rich and delicious.